Abstract

Filters with high throughput, minimal dead volume, and greater sensitivity to particle size are needed, which traditional benchtop filtration cannot provide. Leveraging microfabrication techniques developed by the electronics and optics industries, the filters presented here feature a unique serpentine "NanoRidge" structure, offering a continuous filtration gap spanning over three meters on a compact 4 × 14.5 mm2 footprint. This design provides more precise size filtration cut-offs and consistent flow paths compared to traditional membrane filtration systems. Despite challenges associated with glass substrate deformation impacting uniform filter gap sizes, the study provides valuable insights into the development of NanoRidge filters (NRFs) for enhancing filtration efficiency in preparatory techniques and sample analysis. This study describes the fabrication and testing of these new filter types and directly compares the performance to traditional membrane filters using the metrics of particle size cut-off (the smallest difference in particle size which can be filtered vs passed) and particle loss. The NanoRidge filters were characterized using imaging (during fabrication, post-fabrication and use, fluorescent particles captured and small molecule dye), pressure and flow measurements, and a series of particle sizes "filter or pass" studies. Particle capacity (100-250 nm) ranged from 5 × 108 to 7 × 109 in 1 ml samples at a flow rate of 100 μl/min with backpressure in the range of 1-3 Bar. The optimized fabrication procedure for the 150 nm NRF yielded a small particle recovery of 95% while also achieving a large particle filtration of 73%. High filtration efficiency was also proven in the final 60 and 80 nm NRF fabrication procedures at 96% and 91%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.