Abstract

To date, little information is available on the effects of circadian oscillation on immune regulation in lower vertebrates, such as teleost fish. In the present study, regulation of circadian oscillation of inflammatory cytokine TNF-α gene expression by clock gene was investigated using model fish medaka (Oryzias latipes). Firstly, structural analysis of clock genes was performed, which revealed that medaka BMAL1 and CLOCK1 conserve functionally important domains, such as basic helix-loop-helix (bHLH) and period-aryl hydrocarbon receptor nuclear translocator-single-minded (PAS), seen in their counterparts in other vertebrates. Expression of medaka Bmal1, Clock1, and Per1 genes was confirmed in central and peripheral tissues. Moreover, the expression of these clock genes and TNF-α genes in medaka acclimated to a 12:12 light (L) - dark (D) cycle showed circadian oscillation. In addition, higher expression of TNF-α gene was detected in medaka embryo cells (OLHdrR-e3) overexpressing Bmal1 and Clock1 genes. It was suggested that this increase was mediated by transcriptional regulation by clock proteins, which target E-box sequence in the cis-element of TNF-α gene as was detected by luciferase reporter gene assay. Moreover, in vitro head kidney stimulation with LPS at different zeitgeber time (ZT) under LD12:12 condition affected the degree of TNF-α gene expression, which shows high and low responsiveness to LPS stimulation at ZT18 and ZT10, respectively. These results suggested that fish TNF-α exhibited circadian oscillation regulated by clock proteins and its responsiveness against immune-stimulation depends on time zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call