Abstract
Among 20 species of freshwater fishes examined, Pseudorasbora parva, Rhodeus ocellatus, Cobitis anguillicaudatus, Carassius auratus, Oryzias latipes, Gambusia affinis, and Gyrinocheilus anymonieri were found to drink water like seawater fishes, while 13 remaining species did not drink. For fish species found exclusively in fresh water, angiotensin II (AII) treatment did not induce drinking. In contrast, those freshwater fishes which survive in estuarine brackish water (Leuciscus hakonensis, C. carassius, Parasilurus asotus, G. affinis, Chaenogobius annularis, Tridentiger obscurus, and G. anymonieri responded to AII by drinking. Furthermore, some freshwater fishes which survive either in hypertonic water (C. auratus) or in sea water (Anguilla japonica and O. latipes) also responded to AII by drinking. Of 17 seawater fishes examined, Eptatretus burgeri, Triakis scyllia, and Heterodontus japonicus failed to drink water, and for Trachurus japonicus, Platichthys bicoloratus, and Glossogobius giuris fasciatopunctatus, water intake was minor (similar to freshwater fishes). The 11 remaining seawater fishes drank water. AII did not induce drinking in fishes living exclusively in sea water. However, seawater fishes which survive either in tide pools (Chasmichthys dolichognathus gulosus) or in brackish water (Sillago japonica, Mugil cephalus, G. giuris fasciatopunctatus) responded to AII by drinking. P. bicoloratus, Acanthopagrus schlegeli, and Fugu niphobles were exceptional, in that they survive in brackish water, but did not respond to AII. Although some exceptions exist, it is generally concluded that a drinking response to AII is characteristic of fishes which encounter water more hypertonic than that in which they typically reside. Accordingly, a drinking mechanism induced by AII may be a compensatory emergency reaction to dehydration stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have