Abstract

Acute kidney injury (AKI) is a disease characterised by acute onset, high mortality, and poor prognosis, and is mainly caused by ischemia-reperfusion (I/R). Human urine-derived stem cells (USCs) exhibit antioxidant, anti-inflammatory, and anti-apoptotic cytoprotective effects. Previously, we found that exosomes from USCs had the ability to inhibit apoptosis and protect kidneys from I/R injury. This study aimed to investigate the role of USC-derived exosomes (USC-Exos) in reducing pyroptosis and alleviating I/R-AKI. Models of HK-2 cells hypoxia-reoxygenation (H/R) and I/R kidney injury was established in Sprague Dawley rats to simulate AKI in vitro and in vivo. USC-Exos were isolated using ultracentrifugation and identified via electron microscopy and western blotting. USC-Exos were co-cultured with HK-2 cells and injected into rats via the tail vein. The expression of pyroptosis-related molecules (GSDMD, caspase-1, and NLRP-3) was verified using PCR and western blotting. Changes in renal function were reflected in the serum creatinine, urea, and cystatin C levels. The degree of renal injury was determined using haematoxylin and eosin and immunohistochemical staining. The levels of IL-1β and IL-18 were detected using enzyme-linked immunosorbent assay (ELISA) to verify the role of USC-Exos in pyroptosis. Differentially expressed circRNAs in I/R rat kidneys were screened by transcriptome sequencing, and a dual-luciferase experiment was used to verify the interaction between upstream and downstream molecules. Ischemia-reperfusion resulted in significantly impaired renal function and expression of pyroptosis molecules, and significantly increased concentrations of inflammatory factors. These effects were reversed by injecting USC-Exos. Circ DENND4C was the most significantly decreased circRNA in I/R rat renal tissue, and knock-down of circ DENND4C can aggravate AKI in vivo and in vitro. DAVID(http://david.abcc.ncifcrf.gov) website showed that miR 138-5p/FOXO3a is a potential downstream target of circ DENND4C. Knock-down of circ DENND4C in HK-2 cells resulted in increased expression of miR 138-5p and increased miR 138-5p can reverse the regulation of FOXO3a. Dual-luciferase assay verified the reverse interaction between circ DENND4C, miR 138-5p, and FOXO3a. Exosomes promote cell proliferation and inhibit the activation of NLR family pyrin domain containing 3 through the circ DENND4C/miR 138-5p/FOXO3a pathway, thereby reducing pyroptosis and AKI. Circ DENND4C may be a potential therapeutic target for AKI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call