Abstract

The phenotypic transformation of vascular smooth muscle cells (VSMCs) plays a key role in the pathological process of atherosclerosis (AS), and TRPM7 is involved in this process. In this study, we verified whether circRNAs participate in the phenotypic transformation of VSMCs by regulating TRPM7 in AS. The RNA-sequencing data of atherosclerosis were downloaded and analysed from the GEO database. Only hsa_circ_0021155 related to TRPM7 was differentially expressed in AS. circRNA distribution and expression were observed via FISH and PCR. CCK8, scratch test and Transwell assay were used to observe the proliferation and migration of cells. Western blot was performed to examine changes in α-actin, calponin, SMMHC and TRPM7 proteins. The expression of hsa_circ_0021155 against has-miR-4459/miR-3689c was verified via PCR. The ceRNA relationship of TPRM7–miR4459–circ0021155 was verified via dual luciferase assay, and the effects of miR4459 mimic/inhibitor on the proliferation of cells were further observed. The expression of hsa_circ_0021155 and OX-LDL was increased in VSMCs. hsa_circ_0021155 promoted the expression of TRPM7 and inhibited the protein expression of α-actin, calponin and SMMHC. In addition, it promoted the proliferation and migration of cells and inhibited the expression of miR-3689c and miR-4459 but did not affect miR-4756–5p. The dual luciferase assay showed that circ0021155–miR4459–TRPM7 mRNA was highly compatible and could be mutually regulated by a ceRNA network. In conclusion, hsa_circ_0021155 regulates the proliferation, migration and phenotype transformation of VSMCs induced by OX-LDL via the miR-4459/TRPM7 axis. hsa_circ_0021155 and TRPM7 may offer novel therapeutic targets for atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.