Abstract
As noncombustible nicotine delivery devices, electronic cigarettes (e-cigarettes) are the most popular tobacco product among youth. The widespread popularity of e-cigarettes combined with possible health consequences suggest a need to further research health hazards associated with e-cigarette use. Since conventional tobacco use is a risk factor for osteoporosis, this study investigates the impact of nicotine-free, cinnamon-flavored e-cigarette liquid (e-liquid) on bone-forming osteoblasts compared to flavorless e-liquid. Human tumor-derived osteoblast-like MG-63 cells were exposed for 24 h or 48 h to 0.0.4 %, 0.04 %, 0.4 % or 1 % of unvaped e-liquid or 0.0025 %, 0.025 %, 0.25 %, 1 % or 2.5 % of aerosol condensate in addition to a culture medium only control. Changes in cell viability were assessed by MTT assay, and the expression of a key bone protein, collagen type I, was analyzed by immunofluorescence. Production of reactive oxygen species (ROS) was detected by fluorometry to assess oxidative stress. Cell viability decreased in a dose-dependent manner, and ROS production increased, which was most pronounced with cinnamon-flavored e-liquids. There were no detectable changes in collagen type I protein following exposure to any of the aerosol condensates. This study demonstrates osteoblast-like cells are sensitive to both e-liquids and aerosol condensates and suggests the cytotoxicity of cinnamon-flavored e-liquids might be associated with oxidative stress rather than changes in collagen type I protein expression. This in vitro study provides insight into the potential impacts of e-cigarette use on bone cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.