Abstract

Recent studies have suggested neprilysin (NEP) play a key role in cigarette smoke-induced nonsmall-cell lung carcinoma; however, the detailed mechanism was still unclear. Here, we employed in vitro human bronchial epithelial BEAS-2B cells to investigate whether and how NEP involved in cigarette smoke condensate (CSC)-induced cancer occurrence. In vitro MTT and transwell assay was applied. Live cell imaging and staining were also employed. In vitro data showed that CSC could increase BEAS-2B cell migration while NEP shRNA could block CSC-induced BEAS-2B cell hypermigration. By biotination and live cell staining, we found that after CSC treatment, cell surface NEP was increased while internalization trafficking was shifted from late endosome/lysosome pathway to recycling pathway. Finally, we found that surface NEP could bind to p120 catenin (p120ctn) for lysosome destination turnover while CSC treatment could change p120ctn membrane/cytosome distribution. Loss of p120ctn will subsequently change NEP trafficking and finally, increase its membrane distribution with a phenocopy manner as CSC. These data indicated under CSC treatment; losing of membrane p120ctn could upregulate surface NEP protein level and thus facilitate BEAS-2B cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.