Abstract

The mechanisms by which cigarette smoke condensate (CSC) disrupts F-actin and decreases cell motility in human bronchial (BEAS-2B) cells were assessed. The hypothesis that CSC activated focal adhesion kinase (FAK), mitogen-activated protein kinases (MAPKs), and paxillin in BEAS-2B cells was tested. When BEAS-2B cells were treated with 20 to 100 μg/mL CSC for 1 hour, FAK increased. The CSC caused F-actin disruption, while FAK inhibition alone caused actin aggregates to collapse to the cell periphery, but FAK inhibition combined with CSC caused actin aggregates to distribute throughout the cells. The CSC treatment of BEAS-2B cells showed a dose-dependent increase in the activation of the MAPKs, c-Jun, JNK, ERK, p38, and heat shock protein 27 (Hsp27) and paxillin. Focal adhesion kinase phosphorylation inhibition combined with CSC treatment increased p38 and ERK at 1 hour and 24 hours along with decreased cell number and motility compared with CSC treatment alone. CSC exerts changes in BEAS-2B cells by altering morphology and activating MAPK pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.