Abstract

Understanding of the current density distribution over an electrically heterogeneous surface and its effect on ion transport represents an important issue in electrochemistry, composite materials, geophysics, and some other domains. We report an approach for three-dimensional (3D) modeling (with cylindrical symmetry) of transient ion transfer across a surface composed of conductive and nonconductive areas. In the model formulation and solution we use the electrical current stream function. It allows setting the integral boundary condition for electric current at a heterogeneous surface without any restrictions on the local current density distribution. A very good agreement is found between the numerical solution and the experimental transition time determined from chronopotentiograms. The use of a specially designed membrane allows computation without fitted parameters. We show that the application of specific simplifications for the current density distribution over the surface (uniform distribution thr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.