Abstract

Massive SFR are characterized by intense ionizing fluxes, strong stellar winds and supernovae explosions, all of which have important effects on the surrounding media, on the star-formation (SF) process and on the evolution of YSOs and their disks. We present a multiband study of the massive young cluster NGC6611 and M16, to study how OB stars affect the early stellar evolution and the SF. We search for evidence of triggered SF by OB stars in NGC6611 on a large spatial scale (~10 pc) and how the efficiency of disks photoevaporation depends on the central stars mass. We assemble a multiband catalog with photometric data, from B band to 8.0micron, and X-ray data obtained with 2 new and 1 archival ACIS-I observation. We select the stars with disks from IR photometry and disk-less from X-ray emission, both in NGC6611 and the outer region of M16. We study induced photoevaporation searching for the spatial variation of disk frequency for distinct stellar mass ranges. The triggering of SF by OB stars has been investigated by deriving the history of SF across the nebula. We find evidence of sequential SF in the Eagle Nebula going from the SE (2.6 Myrs) to the NW (0.3 Myrs), with the median age of ~1 Myear. We observe a drop of the disk frequency close to OB stars (up to an average distance of 1 pc), without effects at larger distances. Furthermore, disks are more frequent around low-mass stars (<1 M(solar)) than in high-mass stars, regardless of the distance from OB stars. The SF chronology in M16 does not support the hypothesis of a large-scale SF triggered by OB stars in NGC6611. Instead, we speculate that it was triggered by the encounter (~3 Myrs ago) with a giant molecular shell created ~6 Myrs ago.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.