Abstract
The course of development of salivary peroxidase, an enzyme that has an important role in oral defense mechanisms, has been well documented in rat submandibular glands. However, the only report on salivary peroxidase activity in the other major salivary glands of the rat has been a cytochemical study of the adult parotid gland. In the present investigation, the accumulation of salivary peroxidase activity in developing parotid glands of rats was followed both biochemically and cytochemically. Specific activity (units per mg protein) attributable to salivary peroxidase began at 1 day after birth, then rose rapidly but unevenly, with peaks at 21 and 70 days, and no difference between the sexes at any age. Activity per gland increased progressively to 42 days in both sexes and was significantly higher in males at 70 days. The cytochemical observations on peroxidase activity localized to the rough endoplasmic reticulum and secretory granules of the developing acini were well correlated with the biochemical findings. Peroxidase-negative cells occurred in immature acini at 1 and 7 days, but only in the intercalated ducts thereafter. This observation suggests that the acini are a source of some of the ductal cells, at least during early postnatal development. The developmental pattern of specific activity differed from those of other rat parotid secretory enzymes, indicating that control of their synthesis during development is noncoordinate. The patterns of specific activity of the parotid and submandibular glands were complementary, suggesting that their combined secretions may supply biologically significant peroxidase activity to the oral cavities of rats throughout postnatal development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have