Abstract
Temperature-dependent sex determination (TSD) is a mechanism in which environmental temperature, rather than innate zygotic genotype, determines the fate of sexual differentiation during embryonic development. Reeves’ turtle (also known as the Chinese three-keeled pond turtle, Mauremys reevesii) exhibits TSD and is the only species whose genome has been determined in Geoemydidae to date. Thus, M. reevesii occupy phylogenetically important position for the study of TSD and can be compared to other TSD species to elucidate the underlying molecular mechanism of this process. Nevertheless, neither embryogenesis nor gonadogenesis has been described in this species. Therefore, herein, we investigated the chronology of normal embryonic development and gonadal structures in M. reevesii under both female- and male-producing incubation temperatures (FPT 31 °C or MPT 26 °C, respectively). External morphology remains indistinct between the two temperature regimes throughout the studied embryonic stages. However, the gonadal ridges present on the mesonephros at stage 16 develop and sexually differentiate at FPT and MPT. Ovarian and testicular structures begin to develop at stages 18–19 at FPT and stages 20–21 at MPT, respectively, and thus, the sexual differentiation of gonadal structures began earlier in the embryos at FPT than at MPT. Our results suggest that temperature sensitive period, at which the gonadal structures remain sexually undifferentiated, spans from stage 16 (or earlier) to stages 18–19 at FPT and to stages 20–21 at MPT. Understanding the temperature-dependent differentiation in gonadal structures during embryonic development is a prerequisite for investigating molecular basis underlying TSD. Thus, the result of the present study will facilitate further developmental studies on TSD in M. reevesii.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have