Abstract

Neural activity in the amygdala is critical for fear learning. In anxiety disorder patients, bilateral hyperactivity of the amygdala can be observed. This hyperactivation is often associated with the facilitation of fear learning and/or over-generalization of conditioned fear. In contrast, hypoactivity of the amygdala, e.g. by pharmacological interventions, attenuates or blocks fear learning. To date, little is known about how neural excitability of the amygdala affects specificity or generalization of fear. Therefore, the present study utilized chronic inhibition of GABA synthesis in the amygdala to increase excitability and investigated the effect on the specificity of fear learning. In rats, unilateral cannulas aiming at the amygdala were implanted. The cannulas were connected to subcutaneously implanted osmotic mini pumps that delivered either the GABA synthesis inhibitor L-allylglycine or its inactive enantiomer D-allylglycine. Following one week of chronic GABA synthesis manipulation, the rats were submitted to a discriminative fear conditioning protocol. In addition, anxiety-like behavior in the light-dark box was measured. Our data show that chronic unilateral L-AG infusions into the amygdala improve the specificity of learned fear, support safety learning, and reduce fear generalization and anxiety. This data demonstrates that moderately increased amygdala excitability can be beneficial for the specificity of fear learning and highlights the potential application for therapeutic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call