Abstract

Black sea bream ( Mylio macrocephalus) hepatic heat shock proteins hsp90, hsp70, and hsp60 were found to be thermally and reversibly inducible as they were elevated 2.0, 3.2, and 2.1 fold, respectively, on acute heat shock and returned to pre-heat-shock levels after a 40-hour recovery period. To establish whether salinity plays a role in regulating heat shock protein (hsp) and insulin-like growth factor-I (IGF-I) expression in a euryhaline marine fish, we adapted groups of juvenile black sea bream to salinities of 50 ppt (hypersaline), 33 ppt (seawater), 12 ppt (isoosmotic), and 6 ppt (hypoosmotic) for 8 months. The lowest levels of hsps were found in fish reared in an isoosmotic salinity and the highest in those adapted to hypersaline and hypoosmotic salinities. Hepatic beta-actin messenger RNA abundance remained unchanged in all groups during salinity adaptation, whereas IGF-I mRNA abundance was highest in isoosmotic adapted black sea bream. This study is the first report of an effect of salinity ranging from hypersaline to hypoosmotic on the expression of different hsp forms and IGF-I in fish, and the possible relationship between environmental salinity, hepatic IGF-I expression, and hsp regulation is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.