Abstract

Chronic morphine-treated dorsal-root ganglion (DRG) neurons in DRG/spinal cord explant cultures were previously shown to become supersensitive to the excitatory effects of remarkably low concentrations of the opioid agonists, morphine and dynorphin, and the opioid antagonist, naloxone. The present study demonstrates that this opioid excitatory supersensitivity of chronic morphine-treated DRG neurons (1 μM for > 1 week) is retained for periods > 3 months after return to control culture medium. Acute application of femtomolar dynorphin, as well as nanomolar naloxone, to the treated neurons after months in control medium evoked characteristic prolongation of the action potential duration (APD), as occurs in cells tested during or shortly after chronic opioid exposure. The threshold concentrations for eliciting these excitatory effects in naive DRG neurons are > 1000-fold higher. Furthermore, treatment of micromolar morphine-sensitized neurons with 1 nM etorphine (which is a potent excitatory opioid receptor antagonist) for 1 week prior to return to control medium blocked further expression of opioid excitatory supersensitivity when tested after an additional 1–7 weeks in culture. These results provide a unique in vitro model system for analyses of some of the cellular mechanisms underlying protracted opioid dependence in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.