Abstract

Background: Vasopressin given during hemorrhage is less effective than when given during a stable state in experimental portal hypertension or patients with cirrhosis (the so-called hyposensitivity phenomenon). This study investigated whether chronic inhibition of nitric oxide (NO) synthesis by NG-nitro-L-arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor, could potentiate the portal-hypotensive effect of glypressin (a long-acting vasopressin analogue) in portal-hypertensive rats during acute bleeding status. Methods: Portal hypertension was induced by partial portal vein ligation (PVL). Rats were divided to receive either L-NAME (~25 mg/kg/day in tap water) or placebo (tap water) treatment orally from 2 days prior to until 14 days after the operation. At the end of treatment, L-NAME-and placebo-treated PVL rats were subdivided into without-bleeding and with-bleeding groups to assess the effects of glypressin (0.07 mg/kg) on systemic and portal hemodynamics. In rats with a hypotensive hemorrhage, 4.5 ml of blood was withdrawn and 50% of the withdrawn blood was reinfused before the administration of glypressin. Results: As compared with placebo-treated rats, chronic treatment with L-NAME in PVL rats significantly increased mean arterial pressure (P < 0.001) without modulating portal pressure (P > 0.05). In placebo-treated PVL rats, glypressin resulted in a less decrease in portal pressure in rats with bleeding than in those without bleeding (P < 0.05). For PVL rats with bleeding, the portal-hypotensive effect of glypressin was significantly potentiated after chronic L-NAME treatment (P < 0.05). Conclusions: Chronic inhibition of NO alleviates the splanchnic hyposensitivity to glypressin observed in bleeding PVL rats, suggesting the pathophysiological role of nitric oxide in mediating this splanchnic hyposensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.