Abstract
Skeletal muscle of insulin resistant individuals is characterized by lower fasting lipid oxidation and reduced ability to switch between lipid and glucose oxidation. The purpose of the present study was to examine if chronic hyperglycemia would impair metabolic switching of myotubes. Human myotubes were treated with or without chronic hyperglycemia (20 mmol/l glucose for 4 days), and metabolism of [ 14C]oleic acid (OA) and [ 14C]glucose was studied. Myotubes exposed to chronic hyperglycemia showed a significantly reduced OA uptake and oxidation to CO 2, whereas acid-soluble metabolites were increased compared to normoglycemic cells (5.5 mmol/l glucose). Glucose suppressibility, the ability of acute glucose (5 mmol/l) to suppress lipid oxidation, was 50% in normoglycemic cells and reduced to 21% by hyperglycemia. Adaptability, the capacity to increase lipid oxidation with increasing fatty acid availability, was not affected by hyperglycemia. Glucose uptake and oxidation were reduced by about 40% after hyperglycemia, and oxidation of glucose in presence of mitochondrial uncouplers showed that net and maximal oxidative capacities were significantly reduced. Hyperglycemia also abolished insulin-stimulated glucose uptake. Moreover, ATP concentration was reduced by 25% after hyperglycemia. However, none of the measured mitochondrial genes were downregulated nor was mitochondrial DNA content. Microarray and real-time RT-PCR showed that no genes were significantly regulated by chronic hyperglycemia. Addition of chronic lactate reduced both glucose and OA oxidation to the same extent as hyperglycemia. In conclusion, chronic hyperglycemia reduced substrate oxidation in skeletal muscle cells and impaired metabolic switching. The effect is most likely due to an induced mitochondrial dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.