Abstract

Methylparaben (MP) and propylparaben (PP) are commonly used as food, cosmetic, and drug preservatives. These parabens are detected in the majority of US women and children, bind and activate estrogen receptors (ER), and stimulate mammary tumor cell growth and invasion in vitro. Hemizygous B6.FVB-Tg (MMTV-PyVT)634Mul/LellJ female mice (n = 20/treatment) were exposed to MP or PP at levels within the US Food and Drug Administration's "human acceptable daily intake." These paraben-exposed mice had increased mammary tumor volume compared with control mice (P < 0.001) and a 28% and 91% increase in the number of pulmonary metastases per week compared with the control mice, respectively (P < 0.0001). MP and PP caused differential expression of 288 and 412 mammary tumor genes, respectively (false discovery rate < 0.05), a subset of which has been associated with human breast cancer metastasis. Molecular docking and luciferase reporter studies affirmed that MP and PP bound and activated human ER, and RNA-sequencing revealed increased ER expression in mammary tumors among paraben-exposed mice. However, ER signaling was not enriched in mammary tumors. Instead, both parabens strongly impaired tumor RNA metabolism (eg, ribosome, spliceosome), as evident from enriched KEGG pathway analysis of differential mammary tumor gene expression common to both paraben treatments (MP, P < 0.001; PP, P < 0.01). Indeed, mammary tumors from PP-exposed mice had an increased retention of introns (P < 0.05). Our data suggest that parabens cause substantial mammary cancer metastasis in mice as a function of their increasing alkyl chain length and highlight the emerging role of aberrant spliceosome activity in breast cancer metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.