Abstract

The impact of pharmaceuticals on non-target organisms in the environment is of increasing concern and study. Pharmaceuticals and other pollutants are often present as mixtures in an environmental compartment. Studies on the toxicological implications of these drugs on fish, particularly as mixtures at environmentally relevant concentrations, are very limited. Thus, this study aimed to evaluate the chronic effects of the anticonvulsant drug carbamazepine (CBZ) and progesterone (P4) at environmentally relevant concentrations, individually and in binary mixtures, applying a suite of biomarkers at the molecular level in zebrafish (Danio rerio). The effects on biotransformation enzymes 7-ethoxyresorufin O-deethylase (EROD) and glutathione-S-transferase (GST), antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidases (GPxSe and GPxTOT), and glutathione reductase (GR), and markers of damage, such as DNA strand breaks (DNAsb), lactate dehydrogenase (LDH), lipid peroxidation (LPO), and vitellogenin-like proteins (VTG), were evaluated. Analyses of the biochemical markers indicated that a synergistic dose-ratio-dependent effect of CBZ and P4 in zebrafish occurs after chronic exposure regarding VTG, biotransformation enzymes (EROD, GST), and oxidative stress marker (DNAsb). The results suggest a synergistic effect regarding VTG, thus indicating a high risk to the reproductive success of fish if these pharmaceuticals co-occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.