Abstract

We describe a novel chromosome engineering technique for shuffling selected regions of chromosomes from two strains in Saccharomyces cerevisiae: The technique starts with the construction of MATa and MATalpha strains in which a particular chromosome is split at exactly the same site in both strains such that the split chromosomes generated are marked with different markers. The two strains are then crossed, and the resultant diploid is cultivated in nutrient medium to induce loss of the split chromosome originating from either of the strains. We predicted that some of these clones that are hemizygous for the split chromosome would spontaneously restore a homozygous configuration of the split chromosome during cultivation. We verified this prediction by tetrad analysis and quantitative Southern hybridization analysis, indicating that it is possible to create diploid hybrids in which a selected region of a chromosome from one strain is replaced by the corresponding chromosomal region from another strain. We also found that some chromosomal segments maintain a hemizygous state. This novel technique, which we call 'chromosome shuffling', could provide a new tool to analyze phenotypic alterations caused by the replacement or hemizygosity of a selected chromosomal region in not only laboratory but also industrial strains of S. cerevisiae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.