Abstract
The Bethylidae are the most diverse of Hymenoptera chrysidoid families. As external parasitoids, the bethylids have been widely adopted as biocontrol agents to control insect pests worldwide. Thus far, the genomic information of the family Bethylidae has not been reported yet. In this study, we crystallized into a high-quality chromosome-level genome of ant-like bethylid wasps Sclerodermus sp. ‘alternatusi’ (Hymenoptera: Bethylidae) using PacBio sequencing as well as Hi-C technology. The assembled S. alternatusi genome was 162.30 Mb in size with a contig N50 size of 3.83 Mb and scaffold N50 size of 11.10 Mb. Totally, 92.85% assembled sequences anchored to 15 pseudo-chromosomes. A total of 10,204 protein-coding genes were annotated, and 23.01 Mb repetitive sequences occupying 14.17% of genome were pinpointed. The BUSCO results showed that 97.9% of the complete core Insecta genes were identified in the genome, while 97.1% in the gene sets. The high-quality genome of S. alternatusi will not only provide valuable genomic information, but also show insights into parasitoid wasp evolution and bio-control application in future studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have