Abstract

BackgroundThe fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised – ToxA, Tox1 and Tox3.ResultsA chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions.ConclusionsWe present an updated series of genomic resources for P. nodorum Sn15 – an important reference isolate and model necrotroph – with a comprehensive survey of its predicted pathogenicity content.

Highlights

  • The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens

  • The curated scaffolds of contigs aligned to the 23 optical maps - subsequently referred to as ‘chromosomes’- were numbered in descending size order based on the physical lengths predicted by the optical map (Supplementary Table 5)

  • The chromosome-level assembly for P. nodorum reference isolate Sn15 improved detection of pathogenicity generich regions The new chromosome-level genome assembly of P. nodorum Sn15 created by this study has established the correct number of chromosomes for this pathogen, which was previously underestimated by pulsed-field gel electrophoresis (PFGE) to range from 14 to 19 [19], and is consistent with 22–23 observed in assemblies of other isolates [15, 31]

Read more

Summary

Introduction

The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. In order to provide insight on the evolutionary history and gene repertoire of this pathogen, a genome assembly of Parastagonospora nodorum model isolate Sn15 was first reported in 2007 [1] This used Sanger shotgun sequencing of a genomic BAC library which produced a 37.5 Mbp draft genome reference with 108 scaffolds and 10,762 genes. It was the first species among the class Dothideomycetes for which a whole-genome reference was available [1] and has been used as a model species for cereal necrotrophs This draft genome resource contributed to the discovery of three proteinaceous necrotrophic effectors (NEs) corresponding to known gene loci - ToxA [2], Tox1 [3] and Tox3 [4] - which are major host-specific virulence determinants in P. nodorum. In order to discover novel effectors in P. nodorum and in other fungal plant pathogens, it is important to ensure that the genome assembly and gene annotations are as accurate and reliable as possible

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call