Abstract
BackgroundThe lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. As a result, Group 2 strains were hypothesized to have emerged from a hybridization event distinct from Group 1 strains. Current genome assemblies of S. pastorianus strains are incomplete and highly fragmented, limiting our ability to investigate their evolutionary history.ResultsTo fill this gap, we generated a chromosome-level genome assembly of the S. pastorianus strain CBS 1483 from Oxford Nanopore MinION DNA sequencing data and analysed the newly assembled subtelomeric regions and chromosome heterozygosity. To analyse the evolutionary history of S. pastorianus strains, we developed Alpaca: a method to compute sequence similarity between genomes without assuming linear evolution. Alpaca revealed high similarities between the S. cerevisiae subgenomes of Group 1 and 2 strains, and marked differences from sequenced S. cerevisiae strains.ConclusionsOur findings suggest that Group 1 and Group 2 strains originated from a single hybridization involving a heterozygous S. cerevisiae strain, followed by different evolutionary trajectories. The clear differences between both groups may originate from a severe population bottleneck caused by the isolation of the first pure cultures. Alpaca provides a computationally inexpensive method to analyse evolutionary relationships while considering non-linear evolution such as horizontal gene transfer and sexual reproduction, providing a complementary viewpoint beyond traditional phylogenetic approaches.
Highlights
The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy
We developed a method to investigate the evolutionary origin of S. pastorianus by evaluating the genome similarity of several Group 1 and Group 2 S. pastorianus strains relative to a large dataset of S. cerevisiae and S. eubayanus genomes, including an isolate of the Heineken A-yeast® lineage which was isolated by dr
With 29 of the 31 chromosomes assembled in single contigs and 323 previously unassembled genes, the genome assembly of CBS 1483 presents the first chromosome-level assembly of a S. pastorianus strain and of an alloaneuploid genome in general
Summary
The lager brewing yeast, S. pastorianus, is a hybrid between S. cerevisiae and S. eubayanus with extensive chromosome aneuploidy. S. pastorianus is subdivided into Group 1 and Group 2 strains, where Group 2 strains have higher copy number and a larger degree of heterozygosity for S. cerevisiae chromosomes. The lager-brewing yeast Saccharomyces pastorianus is an interspecies hybrid between S. cerevisiae and S. eubayanus. The ancestral S. pastorianus hybrid likely emerged from a spontaneous hybridization between an ale brewing S. cerevisiae yeast and a wild S. eubayanus contaminant, and took over lager brewing due to increased fitness under these conditions [4,5,6]. The genomes of S. pastorianus strains are highly aneuploid, containing 0 to 5 copies of each chromosome [5, 9,10,11,12,13]. Two groups can be distinguished based on their genome organisation: Group 1 strains, which have approximately haploid S. cerevisiae and diploid S. eubayanus chromosome complements; and Group 2 strains, which have approximately diploid to tetraploid S. cerevisiae and diploid S. eubayanus chromosome complements [5, 10, 11, 14]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have