Abstract

Mucuna pruriens, commonly called velvet bean, is the main natural source of levodopa (L-DOPA), which has been marketed as a psychoactive drug for the clinical management of Parkinson’s disease and dopamine-responsive dystonia. Although velvet bean is a very important plant species for food and pharmaceutical manufacturing, the lack of genetic and genomic information about this species severely hinders further molecular research thereon and biotechnological development. Here, we reported the first velvet bean genome, with a size of 500.49 Mb and 11 chromosomes encoding 28,010 proteins. Genomic comparison among legume species indicated that velvet bean speciated ∼29 Ma from soybean clade, without specific genome duplication. Importantly, we identified 21 polyphenol oxidase coding genes that catalyse l-tyrosine to L-DOPA in velvet bean, and two subfamilies showing tandem expansion on Chr3 and Chr7 after speciation. Interestingly, disease-resistant and anti-pathogen gene families were found contracted in velvet bean, which might be related to the expansion of polyphenol oxidase. Our study generated a high-quality genomic reference for velvet bean, an economically important agricultural and medicinal plant, and the newly reported L-DOPA biosynthetic genes could provide indispensable information for the biotechnological and sustainable development of an environment-friendly L-DOPA biosynthesis processing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call