Abstract

Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO2, and catalyst binding through phosphonate linkage to the TiO2 layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO2 or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.6 or 5.7. The absolute magnitudes of photocurrent changes with the core material, TiO2 spacer layer thickness, or pH, observed photocurrents were 2.5-fold higher in the presence of catalyst. The results of transient absorption measurements and DFT calculations show that electron injection by the photoexcited organic dye is ultrafast promoted by electronic interactions enabled by orientation of the dye's molecular orbitals on the electrode surface. Rapid injection is followed by recombination with the oxidized dye which is 95% complete by 1.5 ns. Although chromophore decomposition limits the efficiency of the DSPEC devices toward O2 production, the flexibility of the strategy presented here offers a new approach to photoanode design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.