Abstract

This study presents a distinctive solid-state naked-eye colorimetric sensing approach by encapsulating a chromoionophoric probe onto a hybrid macro-/meso-pore polymer scaffold for fast and selective sensing of ultra-trace Hg(II). The customized structural/surface properties of the poly(VPy-co-TM) monolith are attained by specific proportions of 2-vinylpyridine (VPy), trimethylolpropane trimethacrylate (TM), and pore-tuning solvents. The interconnected porous network of poly(VPy-co-TM), inherent superior surface area and porosity, is captivating for the homogeneous/voluminous incorporation of probe molecules, i.e., 7-((4-methoxyphenyl)diazenyl)quinoline-8-ol (MPDQ), for the target-specific colorimetric detection. The structural morphology, surface topography, and phase characteristics of the bare poly(VPy-co-TM) monolith and MPDQ@poly(VPy-co-TM) sensor are examined using HR-TEM-SAED (High-Resolution Transmission Electron Microscopy - Selected Area Electron Diffraction), FE-SEM-EDAX (Field Emission Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), p-XRD (Powder X-Ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy), UV-Vis-DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy), and BET/BJH (Brunauer-Emmett-Teller / Barrett-Joyner-Halenda) analysis. The distinctive properties of the sensor reveal a constrained geometrical orientation of the MPDQ probe onto the long-range continuous monolithic network of meso-/-macropore template, enabling selective interaction with Hg(II) with peculiar color transfiguration from pale yellow to deep brown. The sensor demonstrates a linear spectral-color alliance in the 0–200 ppb concentration range for Hg(II), with quantification and detection limits of 0.63 and 0.19 ppb. The sensor efficacy is verified using certified contaminated water and tobacco samples, with excellent reusability, reliability, and reproducibility of ≥ 99.23 % (RSD ≤1.89 %) and ≥ 99.19 % (RSD ≤1.94 %) of Hg(II), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.