Abstract
New composites of a water-stable chromium-based metal organic framework MIL-101 and mesoporous carbon CMK-3 were in situ synthesized with different ratios of MIL-101 and CMK-3 using the hydrothermal method. The composites as well as the parent materials were characterized by X-ray diffraction, thermo gravimetric analysis, scanning electron microscope, transmission electron microscope and nitrogen/carbon dioxide adsorption isotherms. The hybrid material possesses the same crystal structure and morphology as its parent MIL-101, and exhibits an enhancement in CO2 adsorption uptakes when compared to MIL-101 and CMK-3. The increase in CO2 uptakes was attributed to the combined effect of the formation of additional micropores, the enhancement of micropore volume and the activation of unsaturated metal sites by CMK-3 incorporation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have