Abstract
ABSTRACT This study examined the chemical speciation of atmospheric particulate matter (PM) samples collected in Ulaanbaatar, Mongolia. The health effects of atmospheric aerosol depend on the particles’ size distribution, elemental composition and chemical species as well as other factors, which vary according to the pollution sources and meteorological conditions. Employing the International Atomic Energy Agency (IAEA) supported X-ray fluorescence (XRF) beamline at Elettra Sincrotrone Trieste, Italy, we used a small incidence angle for the synchrotron emission radiation in this ultra-high-vacuum environment to analyze the fine and the coarse mode (PM2.5 and PM2.5-10, respectively) through X-ray absorption near-edge structure (XANES) spectroscopy, which was applied to the K-edges of the chromium (Cr) and zinc (Zn) in PM samples selected via energy-dispersive XRF (EDXRF) analysis for their high concentrations of these transition metals. The spectroscopic results identified trivalent chromium sulfate [Cr2(SO4)3] and chromium oxide (Cr2O3) compounds as the major chemical forms of Cr in both the coarse and the fine PM fraction. Furthermore, both fractions contained abundances of sulfate (ZnSO4) and silicate (Zn2SiO4) compounds, but only the fine mode contained Zn oxalate (ZnC2O4), whereas only the coarse mode contained Zn chloride (ZnCl2). These Cr and Zn species seemed to originate from local anthropogenic sources, e.g., combustion products or traffic-related resuspended road dust. Our findings, which are based on the first chemical speciation analysis from Ulaanbaatar, provide insight into the physiochemical characteristics of atmospheric aerosols as well as information on the potential sources of Cr and Zn species bound to fine and coarse PM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have