Abstract

Serum albumins and polylactic acid (PLA) have been used as bioerodable polymers in the preparation of drug-containing microspheres for parenteral drug delivery. The albumin microsphere may be prepared via either chemical cross-linking or heat denaturation of the protein. Heat-denatured albumin microspheres containing mitomycin C (MMC) have been used in pre-clinical and clinical investigations. Due to the high reactivity of MMC as a bifunctional alkylating agent, a study on the stability of MMC in the albumin and PLA microspheres has been carried out using a high-performance liquid chromatographic (HPLC) method. Human serum albumin (HSA) microspheres were prepared using an emulsion method via either heat denaturation at 120 or 170°C or the use of 0.5 M biacetyl as a cross-linking agent. The PLA microspheres were prepared by an emulsion method at 55°C. HPLC analysis of the HSA microspheres showed that about 37% of MMC was converted to 2,7-diaminomitosene derivatives in microspheres prepared by heat denaturation at 120°C. The degradation increased to 82% when the microspheres were prepared with a denaturation temperature of 170°C. The use of biacetyl as a cross-linking agent in the preparation of HSA microspheres resulted in a complete degradation of the incorporated MMC. Biacetyl was found to interact with MMC leading to the formation of 7-aminomitosene derivatives. In contrast to the albumin system, MMC may be incorporated into PLA microspheres without degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call