Abstract

We describe several morphological and functional modifications in isolated rat liver nuclei incubated in the presence of phosphatidylserine (PS) multilamellar vesicles (MLV). These effects, which occur through the release of histone H1, induce chromatin decondensation, as shown by electron microscopy and nuclease digestion. Flow cytometry was employed to monitor these changes in chromatin structure in isolated nuclei by means of perpendicular light scatter (PLS) and fluorescence signals. Chromatin decondensation induced by PS or by low pH treatment was accompanied by an increase in perpendicular light scatter and by less efficient binding of ethidium bromide. These flow cytometric findings are peculiar to chromatin decondensation induced by displacement of histone H1. Conversely, chromatin decondensation caused by lowering of the divalent ion concentration, without displacement of histone H1, is characterized only by an increase in perpendicular light scatter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call