Abstract
Enhanced environmental stress tolerance is important for microbial production of biofuels and biobased chemicals. However, the roles of chromatin regulation in stress tolerance and bioproduction remain unclear. Here, we explore the effects of Ino80, the core subunit of the INO80 chromatin remodeling complex, on yeast stress adaptation. We found that deletion of INO80 led to increased sensitivity of budding yeast Saccharomyces cerevisiae to acetic acid, which is a common inhibitor in lignocellulosic biomass and also serves as a food preservative. Integrated ATAC-seq and RNA-seq analyses further showed that deleting INO80 resulted in extensive changes in chromatin accessibility and gene expression in cell wall-related genes. Genetic interaction between INO80 and AHC2, which is a subunit of the ADA acetyltransferase complex was proved, and the direct role of INO80 in the expression of AHC2 transcription was also confirmed. These findings benefit the development of robust yeast strains and food preservatives by targeting chromatin regulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have