Abstract

Microarray and next-generation sequencing techniques which allow whole genome analysis of chromatin structure and sequence-specific protein binding are revolutionizing our view of chromosome architecture and function. However, many current methods in this field rely on biochemical purification of highly specific fractions of DNA prepared from chromatin digested with either micrococcal nuclease or DNaseI and are restricted in the parameters they can measure. Here, we show that a broad size-range of genomic DNA species, produced by partial micrococcal nuclease digestion of chromatin, can be sequenced using paired-end mode next-generation technology. The paired sequence reads, rather than DNA molecules, can then be size-selected and mapped as particle classes to the target genome. Using budding yeast as a model, we show that this approach reveals position and structural information for a spectrum of nuclease resistant complexes ranging from transcription factor-bound DNA elements up to mono- and poly-nucleosomes. We illustrate the utility of this approach in visualizing the MNase digestion landscape of protein-coding gene transcriptional start sites, and demonstrate a comparative analysis which probes the function of the chromatin-remodelling transcription factor Cbf1p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.