Abstract

Cytogenetic examination of four Japanese hagfish species belonging to the order Myxinida (Eptatretus okinoseanus, E. burgeri. Paramyxine atami, and Myxine garmani) revealed differences in chromosome number between germ cells (spermatocytes and spermatogonia) and somatic cells (liver, blood, gill, and kidney). The differences in chromosome number between spermatogonia (54, 52, 48, and 16) and somatic cells (34, 36, 34, and 14) were 20, 16, 14, and 2 in E. okinoseanus, E. burgeri, P. atami, and M. garmani, respectively. The amount of DNA in a somatic cell (2C) relative to that in a germ cell (2C) averaged 54.6% (E. okinoseanus type A), 44.9% (E. okinoseanus type B), 79.1% (E. burgeri), 60.0% (P. atami), and 70.2% (M. garmani). These results clearly indicate that chromosome elimination takes place during early cleavage in the four hagfish species of Myxinida living in Japanese waters, except in the ancestral germline cells. C-banding of metaphase chromosome preparations of germline and somatic cells from each hagfish species revealed that the C-band-positive chromatin in the ancestral somatic cells had been almost completely eliminated. Three patterns of elimination of this chromatin are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call