Abstract
Chondrules are millimetre-sized spherules (mostly silicate) that dominate the texture of primitive meteorites. Their formation mechanism is debated, but their sheer abundance suggests that the mechanism was both energetic and ubiquitous in the early inner Solar System. The processes suggested--such as shock waves, solar flares or nebula lightning--operate on different length scales that have been hard to relate directly to chondrule properties. Chondrules are depleted in volatile elements, but surprisingly they show little evidence for the associated loss of lighter isotopes one would expect. Here we report a model in which molten chondrules come to equilibrium with the gas that was evaporated from other chondrules, and which explains the observations in a natural way. The regions within which the chondrules formed must have been larger than 150-6,000 km in radius, and must have had a precursor number density of at least 10 m(-3). These constraints probably exclude nebula lightning, and also make formation far from the nebula midplane problematic. The wide range of chondrule compositions may be the result of different combinations of the local concentrations of precursors and the local abundance of water ice or vapour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.