Abstract
I have proposed that droplet chondrules were formed by jetting during collision of meteoritic particles with diameters ranging in order of magnitude from 0.5 mm to 20 cm. This conclusion, based on a dynamic model for the collision process, supports the hypotheses of Wasson (2) (based on geochemical considerations) and Whipple (35) and Cameron (36) (based on dynamic model considerations) that chondrules were formed from objects less than 1 m in radius. In this model, the formation of chondrules is viewed as a textural, but not substantial chemical, change in the material of the early solar system. Droplets of melt produced by jetting are mixtures of material derived from two parent grains. Jets are probably not appreciably fractionated (except in volatile elements) either in the short duration of the shock events (several microseconds) or in subsequent cooling. This model for the formation of droplet chondrules implies that they were formed at a time in the history of the solar system when particle sizes were small. The most likely time for this condition is early in the process of accretion of nebular dust to planetary matter. Since velocities less than approximately 1.5 km/sec are required for the agglomeration and accretion of particles (37), the relatively higher velocities indicated for droplet chondrule-forming collisions indicate an early high-velocity destructive epoch amidst the general trend toward accretion of material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.