Abstract

Objective. Chondroitinase ABC (ChABC) has emerged as a promising therapeutic agent for central nervous system regeneration. Despite multiple beneficial outcomes for regeneration, translation of this enzyme is challenged by poor pharmacokinetics, localization, and stability. Approach. This study explored the function and in vitro application of engineered ChABC fused to galectin-3 (Gal3). Two previously developed ChABC-Gal3 oligomers (monomeric and trimeric) were evaluated for functionality and kinetics, then applied to an in vitro cellular outgrowth model using dorsal root ganglia (DRGs). The fusions were combined with two formulations of hyaluronan (HA)-based scaffolds to determine the extent of active enzyme release compared to wild type (WT) ChABC. Main Results. Monomeric and trimeric ChABC-Gal3 maintained digestive capabilities with kinetic properties that were substrate-dependent for chondroitin sulfates A, B, and C. The fusions had longer half-lives at 37 °C on the order of seven fold for monomer and twelve fold for trimer compared to WT. Both fusions were also effective at restoring DRG outgrowth in vitro. To create a combination approach, two triple-component hydrogels containing modified HA were formulated to match the mechanical properties of native spinal cord tissue and to support astrocyte viability (>80%) and adhesion. The hydrogels included collagen-I and laminin mixed with either 5 mg ml−1 of glycidyl methacrylate HA or 3 mg ml−1 Hystem. When combined with scaffolds, ChABC-Gal3 release time was lengthened compared to WT. Both fusions had measurable enzymatic activity for at least 10 d when incorporated in gels, compared to WT that lost activity after 1 d. These longer term release products from gels maintained adequate function to promote DRG outgrowth. Significance. Results of this study demonstrated cohesive benefits of two stabilized ChABC-Gal3 oligomers in combination with HA-based scaffolds for neural applications. Significant improvements to ChABC stability and release were achieved, meriting future studies of ChABC-Gal3/hydrogel combinations to target neural regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.