Abstract

Triatoma patagonica Del Ponte (Hemiptera: Reduviidae), a vector of Chagas' disease, is widely distributed in Argentina and is found in sylvatic and peridomiciliary ecotopes, as well as occasionally in human dwellings after the chemical control of Triatoma infestans. Anti-cholinesteratic products can be applied in peridomiciliary areas and thus knowledge of cholinesterase activity during embryonic development in this species might contribute further information relevant to effective chemical control. Cholinesterase activity was characterized by reactions to eserine 10(-5) m, to increasing concentrations of substrate and to varying centrifugal speeds. Acetylcholinesterase activity was detected on day 4 and was significant from day 5. A reduction in cholinesterase activity towards acetylthiocholine (ATC) was observed on days 9 and 10 of development. Cholinesterase activity towards ATC and butyrylthiocholine (BTC) in homogenates of eggs was inhibited by eserine 10(-5) m. The shape of the curve indicating levels of inhibition at different concentrations of ATC was typical of acetylcholinesterase. Activity towards BTC did not appear to be inhibited by excess substrate, which parallels the behaviour of butyrylcholinesterases. Cholinesterase activity towards ATC was reduced in supernatant centrifuged at 15 000 g compared with supernatant centrifuged at 1100 g. The cholinesterase system that hydrolyzes mainly ATC seems to belong to the nervous system, as indicated by its behaviour towards the substrates assayed, its greater insolubility and the fact that it evolves parallel to the development of the nervous system. Knowledge of biochemical changes associated with the development and maturation of the nervous system during embryonic development would contribute to the better understanding of anti-cholinesteratic compounds with ovicidal action that might be used in control campaigns against vectors of Chagas' disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.