Abstract
Active dendritic integrative mechanisms such as regenerative dendritic spikes enrich the information processing abilities of neurons and fundamentally contribute to behaviorally relevant computations. Dendritic Ca2+ spikes are generally thought to produce plateau-like dendritic depolarization and somatic complex spike burst (CSB) firing, which can initiate rapid changes in spatial coding properties of hippocampal pyramidal cells (PCs). However, here we reveal that a morpho-topographically distinguishable subpopulation of rat and mouse hippocampal CA3PCs exhibits compound apical dendritic Ca2+ spikes with unusually short duration that do not support the firing of sustained CSBs. These Ca2+ spikes are mediated by L-type Ca2+ channels and their time course is restricted by A- and M-type K+ channels. Cholinergic activation powerfully converts short Ca2+ spikes to long-duration forms, and facilitates and prolongs CSB firing. We propose that cholinergic neuromodulation controls the ability of a CA3PC subtype to generate sustained plateau potentials, providing a state-dependent dendritic mechanism for memory encoding and retrieval.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have