Abstract

To examine the role played by cholinergic input and processes in the supraoptic nucleus (SON) in the control of body temperature and water intake in rats, we used microdialysis to stimulate and analyze SON without disturbing the behavior of unanesthetized rats. After microdialysis, we also investigated immunoreactivity for c-Fos protein in the brain as an index of neuronal activation. Stimulation with neostigmine, an acetylcholine esterase inhibitor, through the microdialysis probe increased the extracellular concentration of acetylcholine in the SON. This cholinergic stimulation dose-dependently increased body temperature but did not significantly change the water intake. The stimulation markedly increased c-Fos-like immunoreactivity (Fos-IR) in the SON and certain hypothalamic areas, including the paraventricular nucleus (PVN) and median preoptic nucleus (MnPO). Fos-IR was also evident in certain regions of the pons and brainstem, including the locus ceruleus (LC), area postrema (AP), and nucleus of the solitary tract (NTS). Addition of atropine, a muscarinic receptor antagonist, to the dialysis medium containing neostigmine attenuated the increase of Fos-IR and suppressed the neostigmine-induced responses in body temperature. These results suggest that cholinergic input and activation of the muscarinic cholinoceptive neurons in the SON contribute to the regulation of body temperature. Activation of noradrenergic pathways in the brainstem including LC and NTS may be involved in the thermoregulation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.