Abstract

ACh is an important modulator of breathing, including at the level of the retrotrapezoid nucleus (RTN), where evidence suggests that ACh is essential for the maintenance of breathing. Despite this potentially important physiological role, little is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we show at the cellular level that ACh increases RTN chemoreceptor activity by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. These results dispel the theory that ACh is required for RTN chemoreception by showing that ACh, similar to serotonin and other modulators, controls the activity of RTN chemoreceptors without interfering with the mechanisms by which these cells sense H(+). By identifying the mechanisms by which wake-on neurotransmitters such as ACh modulate RTN chemoreception, the results of the present study provide a framework for understanding the molecular basis of the sleep-wake state-dependent control of breathing. ACh has long been considered important for the CO2/H(+)-dependent drive to breathe produced by chemosensitive neurons in the retrotrapezoid nucleus (RTN). However, despite this potentially important physiological role, almost nothing is known about the mechanisms responsible for the cholinergic control of RTN function. In the present study, we used slice-patch electrophysiology and pharmacological tools to characterize the effects of ACh on baseline activity and CO2/H(+)-sensitivity of RTN chemoreceptors, as well as to dissect the signalling pathway by which ACh activates these neurons. We found that ACh activates RTN chemoreceptors in a dose-dependent manner (EC50 = 1.2 μm). The firing response of RTN chemoreceptors to ACh was mimicked by a muscarinic receptor agonist (oxotremorine; 1 μm), and blunted by M1- (pirezenpine; 2 μm) and M3- (diphenyl-acetoxy-N-methyl-piperidine; 100 nm) receptor blockers, but not by a nicotinic-receptor blocker (mecamylamine; 10 μm). Furthermore, pirenzepine, diphenyl-acetoxy-N-methyl-piperidine and mecamylamine had no measurable effect on the CO2/H(+)-sensitivity of RTN chemoreceptors. The effects of ACh on RTN chemoreceptor activity were also blunted by inhibition of inositol 1,4,5-trisphosphate receptors with 2-aminoethoxydiphenyl borate (100 μm), depletion of intracellular Ca(2+) stores with thapsigargin (10 μm), inhibition of casein kinase 2 (4,5,6,7-tetrabromobenzotriazole; 10 μm) and blockade of KCNQ channels (XE991; 10 μm). These results show that ACh activates RTN chemoreceptors by a CO2/H(+) independent mechanism involving M1/M3 receptor-mediated inositol 1,4,5-trisphosphate/Ca(+2) signalling and downstream inhibition of KCNQ channels. Identifying the components of the signalling pathway coupling muscarinic receptor activation to changes in chemoreceptor activity may provide new potential therapeutic targets for the treatment of respiratory control disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call