Abstract
Deficiency of choline, a required nutrient, is related to intestinal failure-associated liver disease (IFALD). Therefore, we aimed to investigate the effects of choline supplementation on IFALD and the underlying mechanisms. Male Sprague-Dawley rats (4 weeks old) were fed AIN-93G chow and administered intravenous 0.9% saline (control), parenteral nutrition (PN), or PN plus intravenous choline (600 mg/kg) for 7 days. We evaluated body weight, hepatic histology, biochemical indicators, triglycerides, oxidative status, methylation levels of peroxisomal proliferator-activated receptor alpha (PPARα) gene promoter, expression of PPARα and carnitine palmitoyltransferase 1 (CPT1), and levels of choline metabolites. The PN + choline group exhibited improved body weight compared with the PN group. PN impaired hepatic function, increased hepatic triglycerides, induced dyslipidemia, enhanced reactive oxygen species and malondialdehyde, and reduced total antioxidant capacity. The PN group had higher pathologic scores than the control group. These results were prevented by choline administration. Compared with the control group, PN increased PPARα promoter methylation and hepatic betaine concentration, reduced hepatic choline and phosphatidylcholine (PC) levels, decreased plasma choline and betaine concentrations, and downregulated PPARα and CPT1 mRNA and protein expression. Choline supplementation elevated hepatic choline and PC levels and enhanced plasma choline, betaine, and PC concentrations but reduced hepatic betaine level, reversed PPARα promoter hypermethylation, and upregulated PPARα and CPT1 mRNA and protein expression in PN-fed rats, compared with rats receiving PN alone. Choline addition to PN may prevent IFALD by reducing oxidative stress, enhancing hepatic fat export, and promoting fatty acid catabolism in immature rats receiving PN.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.