Abstract

BackgroundLow plasma betaine has been associated with unfavorable plasma lipid profiles and cardiovascular risk. In some studies raised plasma betaine after supplementation is associated with elevations in plasma lipids. We aimed to measure the relationships between plasma and urine betaine and plasma lipids, and the effects of lipid-lowering drugs on these.MethodologyFasting plasma samples were collected from 531 subjects (and urine samples from 415) 4 months after hospitalization for an acute coronary syndrome episode. In this cross-sectional study, plasma betaine and dimethylglycine concentrations and urine excretions were compared with plasma lipid concentrations. Subgroup comparisons were made for gender, with and without diabetes mellitus, and for drug treatment.Principal FindingsPlasma betaine negatively correlated with triglyceride (Spearman's rs = −0.22, p<0.0001) and non-high-density lipoprotein cholesterol (rs = −0.27, p<0.0001). Plasma betaine was a predictor of BMI (p<0.05) and plasma non-high-density lipoprotein cholesterol and triglyceride (p<0.001) independently of gender, age and the presence of diabetes. Using data grouped by plasma betaine decile, increasing plasma betaine was linearly related to decreases in BMI (p = 0.008) and plasma non-HDL cholesterol (p = 0.002). In a non-linear relationship betaine was negatively associated with elevated plasma triglycerides (p = 0.004) only for plasma betaine >45 µmol/L. Subjects taking statins had higher plasma betaine concentrations (p<0.001). Subjects treated with a fibrate had lower plasma betaine (p = 0.003) possibly caused by elevated urine betaine loss (p<0.001). The ratio of coenzyme Q to non-high-density lipoprotein cholesterol was higher in subjects with higher plasma betaine, and in subjects taking a statin.ConclusionLow plasma betaine concentrations correlated with an unfavourable lipid profile. Betaine deficiency may be common in the study population. Controlled clinical trials of betaine supplementation should be conducted in appropriate populations to determine whether correction affects cardiovascular risk.

Highlights

  • Betaine is a dietary component [1,2], and human betaine requirements can be met by the metabolism of choline [3,4]

  • Low plasma betaine concentrations correlated with an unfavourable lipid profile

  • Controlled clinical trials of betaine supplementation should be conducted in appropriate populations to determine whether correction affects cardiovascular risk

Read more

Summary

Introduction

Betaine (trimethylglycine, ‘‘TMG’’) is a dietary component [1,2], and human betaine requirements can be met by the metabolism of choline [3,4]. It is a lipophobic metabolite, it has physiological interactions with lipids. The effects of betaine on blood and tissue lipids have been documented in small animal models [7,8,9], suggesting that betaine supplementation has a favourable effect on obesity-related health risk factors. In cross-sectional studies there is a negative relationship between plasma betaine and plasma lipids, non-HDL cholesterol [15]. We aimed to measure the relationships between plasma and urine betaine and plasma lipids, and the effects of lipid-lowering drugs on these

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.