Abstract
Cholesterol is detrimental to human health in excess but is also essential for normal embryogenesis. Hence, enzymes involved in its synthesis possess many layers of regulation to achieve balanced cholesterol levels. 7-Dehydrocholesterol reductase (DHCR7) is the terminal enzyme of cholesterol synthesis in the Kandutsch-Russell pathway, converting 7-dehydrocholesterol (7DHC) to cholesterol. In the absence of functional DHCR7, accumulation of 7DHC and a lack of cholesterol production leads to the devastating developmental disorder, Smith-Lemli-Opitz syndrome. This study identifies that statin treatment can ameliorate the low DHCR7 expression seen with common Smith-Lemli-Opitz syndrome mutations. Furthermore, we show that wild-type DHCR7 is also relatively labile. In an example of end-product inhibition, cholesterol accelerates the proteasomal degradation of DHCR7, resulting in decreased protein levels and activity. The loss of enzymatic activity results in the accumulation of the substrate 7DHC, which leads to an increased production of vitamin D. Thus, these findings highlight DHCR7 as an important regulatory switch between cholesterol and vitamin D synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.