Abstract
Background: Cholestasis is a pathophysiological condition, significantly reducing spermatozoa production. MiR-34c is highly expressed in adult male testicles and controls different stages of spermatogenesis. Objectives: Here, we aimed to investigate miR-34c expression in the testes of rat models of cholestasis. The expressions of THY-1, FGF-2, and CASP-3 genes, that are targeted by mirR-34c were also investigated. Methods: Cholestasis was induced in six adult rats via bile duct ligation. Four weeks after cholestasis induction, sera and testicular tissues were collected for further examinations. The levels of liver enzymes were measured using the ELISA. The structure of the testes was evaluated by histological examination. Total RNA was extracted from testes using a special kit and converted to cDNA. The expressions of miR-34c-5p, THY-1, FGF-2, and CASP-3 genes were determined by Real-Time PCR. Results: The serum levels of ALP, AST, and ALT were significantly elevated in the rat models of cholestasis (P < 0.001). Real-Time PCR revealed that the expressions of miR-34c-5p, THY-1, and FGF-2 genes decreased while CASP-3 gene was upregulated in the testes of cholestatic animals (all differences were significant at P < 0.05). Conclusions: Our study indicated that cholestasis was associated with reduced expression of miR-34c and altered expression of its target genes in the testis. Our results highlight the potential effects of cholestasis, a hepatobiliary disease, on testicular tissue function and male fertility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.