Abstract
In this paper, we propose two alternative schemes of fast online sequential extreme learning machine (ELM) for training the single hidden-layer feedforward neural networks (SLFN), termed as Cholesky factorization based online regularized ELM with forgetting mechanism (CF-FORELM) and Cholesky factorization based online kernelized ELM with forgetting mechanism (CF-FOKELM). First, the solutions of regularized ELM (RELM) and kernelized ELM (KELM) using the matrix Cholesky factorization are introduced; then the recursive method for calculating Cholesky factor of involved matrix in RELM and KELM is designed when RELM and KELM are applied to train SLFN online; consequently, the CF-FORELM and CF-FOKELM are obtained. The numerical simulation results show CF-FORELM demands less computational burden than Dynamic Regression ELM (DR-ELM), and CF-FOKELM also owns higher computational efficiency than both FOKELM and online sequential ELM with kernels (OS-ELMK), and CF-FORELM is less sensitive to model parameters than CF-FOKELM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.