Abstract
This paper is concerned with flow-rate limitations in open capillary channels under low-gravity conditions. The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces.In this study the steady one-dimensional momentum equation is solved numerically for perfectly wetting incompressible liquids to determine important characteristics of the flow, such as the free-surface shape and limiting volumetric flow rate. Using the ratio of the mean liquid velocity and the longitudinal small-amplitude wave speed a local capillary speed index on the flow-rate limit is confirmed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have