Abstract
Prognostic estimators for a clinical event may use repeated measurements of markers in addition to fixed covariates. These measurements can be linked to the clinical event by joint models that involve latent features. When the objective is to choose between different prognosis estimators based on joint models, the conventional Akaike information criterion is not well adapted and decision should be based on predictive accuracy. We define an adapted risk function called expected prognostic cross-entropy. We define another risk function for the case of right-censored observations, the expected prognostic observed cross-entropy (EPOCE). These risks can be estimated by leave-one-out cross-validation, for which we give approximate formulas and asymptotic distributions. The approximated cross-validated estimator CVPOL (a) of EPOCE is studied in simulation and applied to the comparison of several joint latent class models for prognosis of recurrence of prostate cancer using prostate-specific antigen measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.