Abstract

In this work the relationship between the ratio of the global CH* and OH* flame chemiluminescece and the global equivalence ratio of a technically premixed swirl-stabilized flame is investigated. The burner allows for a modification of the premix fuel injection pattern. The global flame chemiluminescence is monitored by a high-sensitivity light spectrometer and multiple photo-multipliers. The photo-multipliers were equipped with narrow optical band-pass filters and recorded the flame’s OH*, CH* and CO2* chemiluminescence intensity. To ensure an approximately uniform equivalence ratio distribution in the combustion zone, the spatial OH* and CH* flame chemiluminescence was recorded simultaneously with one ICCD camera using a special optical setup, which incorporated among other things one fully reflective and one semi-reflective mirror and appropriate optical filters. The flame chemiluminescence intensity was mapped for a range of equivalence ratios and air mass flows. The mapping shows that (as stated for perfectly premixed flames in the literature) the OH*, CH* and CO2* intensity of the investigated flame depends linearly on the air mass flow and exponentially on the equivalence ratio (i.e., I = km * φβ). Hence for the investigated operating conditions (i.e., quasi premix conditions) the global CH*/OH* intensity can be employed as a measure of the global equivalence ratio for the operating conditions investigated in this work. However, the contribution of broadband CO2* chemiluminescence in the wave length range of CH* chemiluminescence has to be accounted for.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call