Abstract

Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.