Abstract

Bacterial DNA (bDNA) and lipopolysaccharide (LPS) are potent activators of immune cells such as monocytes and macrophages, which contribute to systemic inflammatory response syndrome (SIRS) and sepsis. To date, no effective anti-sepsis drugs have been developed for clinical use. Chloroquine (CQ), a diprotic weak base traditionally used for treating malaria, was recently shown to decrease cytokine release from macrophages induced by LPS and CpG oligonucleotide (CpG ODN). In the present study, Escherichia coli DNA (EC DNA), CpG ODN and LPS were used to induce SIRS/sepsis in animal models. We found that 30 mg/kg of CQ could protect mice from lethal challenge by CpG ODN and LPS, and 25 mg/kg of CQ could decrease serum TNF-α and IL-6 in rats injected with sublethal doses of CpG ODN and LPS. In addition, treatment of murine macrophage ANA-1 cells with 2 mM CQ potently inhibited the release of TNF-α, IL-6 and IL-12 induced by CpG ODN and LPS. In human peripheral blood mononuclear cells (hPBMC), 100–200 μM CQ almost completely abrogated release of both TNF-α and IL-6 induced by CpG ODN and LPS, whereas IL-6 release induced by EC DNA was not significantly affected by 50 μM CQ. Furthermore, CQ reduced the expression of TLR9 and TLR4 mRNA and the activation of NFκB and AP-1 stimulated by CpG ODN and LPS in ANA-1 cells. Flow cytometry and confocal microscopy revealed that CQ increased the accumulation of CpG ODN within ANA-1 cells without influence on its uptake, suggesting that the delayed degradation of CpG ODN was associated with the reduction of proinflammatory cytokine release from the cells. Our results demonstrated that CQ-mediated protection of lethal challenge by CpG ODN and LPS was associated with the reduction of proinflammatory cytokine release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.